Высокая печать

Одним из самых старых способов печати является высокая печать, к которой относят флексографию и печать с металлических печатных форм – металлографию.

Процесс высокой печати осуществляется посредством, не вырезанных как в глубокой печати, а наоборот, возвышающихся над поверхностью печатной формы печатных элементов.

Высокая печать, в основном осуществляется с помощью машин. Краски для высокой печати применяют вязкие, пастообразные. Переносятся на бумагу краски с помощью металлических печатных форм.

Машины для глубокой печати делятся на ручные прессы, тигельные станки и плоскопечатные ротационные машины.

Высокая печать до недавнего времени являлась доминирующей в отрасли полиграфии. Но сегодня ее практически заменил офсетный способ. Сейчас с помощью высокой печати печатают лишь продукцию, требования к качеству которой невелики: карманные телефонные справочники или отдельные виды ежедневных газет.

Видоизмененная высокая печать, где нанесение изображения осуществляется посредством резиновой печатной формы – цилиндра, широко применяется при печати упаковки.

Флексография или флексографская печать – это один из недавно возникших методов высокой печати. Само название до 50-х годов 20-го века было другим, а именно – анилиновая печать.

Этот вид печати отличается применением жидких красок и гибких печатных форм (клише). Кроме того, процесс печати происходит под небольшим давлением печатных форм на запечатываемый материал.

Благодаря использованию эластичных печатных форм , изготовленных из фотополимеризующих материалов, а не твердых печатных форм, возможно наносить флексографические изображения на неровные и негладкие поверхности, такие как ткань, картон и различные упаковочные материалы.

Высокая печать с металлических форм применяется преимущественно для печати книг. В течение четырех столетий она была доминирующим способом печати для изготовления плакатов, визиток, церковных, ведомственных и служебных бумаг, одно и двусторонних листовок с местными новостями, ежедневных и еженедельных газет, а также простой акциденции. Сначала процесс печати базировался на принципе тигельного пресса (рис. 1.6-1). Изобретение Фридрихом Кёнигом в 1812 г. плоскопечатных машин привело к повышению производительности и существенному прогрессу высокой печати.

Предпосылкой для создания рулонных ротационных печатных машин явилось открытие в 1854 г. стереотипных полукруглых форм. Это позволяло печатать, в частности, газеты большими тиражами, а на различных специальных машинах стало возможным изготавливать высококачественную многокрасочную печатную продукцию. Для печати обоев применялись специальные рулонные машины высокой печати с планетарным расположением цилиндров (большой опорный цилиндр и до 20 формных валиков со своими красочными аппаратами), а для изготовления другой печатной продукции были предложены другие разнообразные машины. Примером может служить тигельная машина фирмы Гейдельберг (рис. 13.1-19) — самая распространенная в мире машина высокой печати.

Существенными недостатками печатных форм высокой печати по сравнению с офсетными являются их высокая стоимость, сложность приладки, ограничения качества печати и невысокие производственные скорости.

Рис. 3-4
Структура слоев фотополимерного формного материала, предназначенного для изготовления печатных форм высокой печати Nyloprint (BASF)

Высокая печать находит сегодня применение в печати формуляров, этикеток, лотерейных билетов, ценных бумаг, телефонных справочников и обыкновенных карманных книг, правда, с тенденцией к снижению ее доли в их производстве. Способ высокой печати применяется также в ротационной газетной печати с красочными аппаратами, показанными на рис. 3-1 (например, модель «Курьер» (Courier) фирмы Koenig & Bauer). Между тем в эксплуатации находятся ещё некоторые газетные ротационные машины, а также машины для прямой и косвенной печати (с резиновым офсетным цилиндром). Последние газетные машины высокой печати были выпущены в 80-х годах ХХ века.

В качестве печатной формы сегодня служат в основном вымывные фотополимеризующиеся пластины, причем предлагаются различные вымывные системы и различная глубина вымывания, связанные с различными материаламиосновами. На примере формных пластин фирмы BASF показан способ изготовления печатных форм.

Рис. 3-5
Магнитный цилиндр с формой высокой печати (NELA)

Послойное строение формного материала «Nyloprint» представлено на рис. 3-4. В качестве основы используются сталь, алюминий или лавсан. В зависимости от типа формных пластин их толщина составляет примерно от 0,8 до 1,75 мм, а высота рельефа в зависимости от назначения и типа формы — от 0,2 до 0,67 мм. Рельефный слой состоит из фото полимеризующегося материала (чувствительного к УФлучам с длиной волны 360-370 нм), который прочно скреплён с основой.

Изготовление печатной формы «Nyloprint» включает следующие этапы:

 

  • удаление защитной фольги;
  • засветка полимеризующегося слоя через негатив (засвеченные места задубливаются; чем меньше площадь экспонируемых участков, тем меньше впоследствии глубина рельефа; для записи используются фотовыводные устройства (ФВУ) планшетного типа, ФВУ с внешним барабаном, а также копировальные устройства);
  • вымывание незадубленного фотополимера водой или спиртоводной смесью;
  • сушка печатного рельефа после вымывания;
  • последующая общая УФзасветка для того, чтобы произошла полная полимеризация и затвердение печатного рельефа.

 

При этом способе обеспечивается воспроизведение тонких линий шириной не менее 50 мкм и маленьких отдельно расположенных точек диаметром 200 мкм.

Формы высокой печати на стальной основе могут простым способом закрепляться на магнитном формном цилиндре (рис. 3-5).

Эластичность форм флексографской печати в сочетании с красками низкой вязкости позволяет печатать на невпитывающих и шероховатых поверхностях, что является типичным в производстве упаковки. Более того, флексографская печать особенно пригодна для запечатывания гибких материалов (например, пленки).

Печатный процесс требует небольшого давления, при этом обеспечивается надежная передача красок с печатной формы на запечатываемый материал. Давление должно быть равномерно распределено по всем печатным элементам как в зоне контакта, так и по всей длине печати. Отклонения размеров цилиндра и радиальное биение устраняются за счет первоначального небольшого избыточного натиска. Предпосылкой для равномерного распределения давления по всему запечатанному изображению является постоянное давление печати при его незначительных колебаниях. Мягкие эластичные печатные формы позволяют получить хороший результат при незначительном натиске, причём можно, например, печатать на гофрокартоне без разрушения его структуры.

Следует обратить внимание на то, что слишком сильная деформация гибкой печатной формы приводит к значительному растискиванию растровых точек. В особенности это заметно на светлых участках, где находятся маленькие, тонкие и поэтому легко деформируемые печатные элементы. Так как при этом речь может идти в основном о случайных ошибках, то корректура градаций на стадии допечатных процессов практически невозможна. Износ печатной формы, который увеличивается с числом отпечатанных оттисков, также приводит к увеличению размеров растровых точек, т.е. растискиванию.

Печатные формы

Печатные формы, также называемые «клише», изготавливаются из резины или фотополимеризующихся материалов. Их твёрдость и толщина должны соответствовать используемому в данный момент запечатываемому материалу и сюжету. В качестве запечатываемых материалов широко используются: гофрокартон, бумага, полимерные пленки и фольга и др. К ним могут предъявляться специальные требования (например, к упаковке для промышленных товаров или пищевых продуктов). Поэтому во флексографской печати применяются разнообразные виды печатных красок. Это могут быть краски на водной основе, спиртоустойчивые, бензиноустойчивые, устойчивые к эфирам, УФкраски и т.д. Материал для печатных форм нужно выбирать так, чтобы он не набухал, не становился хрупким, не растворялся под воздействием красок.

Клише имеют либо плоскую форму и закрепляются на формном цилиндре с помощью клея или двусторонней липкой ленты, либо уже изготовлены в цилиндрической форме (например, по гильзовой технологии «Компьютер — печатная гильза»).

Резиновые клише.

Они изготавливаются путем матрицирования (тиснением отливных форм) с использованием сырой резины с последующей ее вулканизацией. Равномерность по толщине обеспечивается шлифовкой оборотной стороны клише.

Рис. 3-6
Сравнение рельефов печатной формы, созданной химико-фотографическим способом из фотополимеризующейся композиции, и резиновой печатной формы, изготовленной способом лазерного гравирования

Резиновые, а точнее эластомерные, клише обладают лучшим качеством, если нанести на всю их поверхность эластомер и вслед за этим лазерным гравированием получить на ней печатный рельеф. Печатающие элементы (в отличие от фотохимического способа) имеют боковые грани, скошенные к основанию, в то время как верхняя поверхность имеет прямые вертикальные боковые грани. Это существенно повышает устойчивость клише к износу во время печати тиража и уменьшает связанное с этим растискивание растровых точек (рис. 3-6).

Гравированные лазером клише ещё мало распространены, их линиатура растра составляет 40 лин/см, что существенно ниже, чем у фотополимерных печатных форм (где она составляет приблизительно 60 лин/см).

Фотополимерные печатные формы.

Фотополимеризующиеся материалы, из которых изготавливаются флексографские печатные формы, могут быть жидкими (системы Liquid) или твёрдыми (система Solid), причём твёрдая их форма используется чаще. Сырьём для фотополимеризующихся материалов служат эластомерное связующее вещество, ненасыщенные мономеры и УФфотоинициаторы. Они растворимы в воде или в органических растворителях. При засветке УФлучами происходит реакция полимеризации или «сшивание». Образованные путем этой реакции фотополимеры становятся нерастворимыми. При частичной засветке фотополимеры могут частично задубливаться, в то время как незасвеченные участки можно растворить, т.е. они сохраняют способность к вымыванию. Это свойство используется при изготовлении рельефных печатных форм.

Твёрдые фотополимеризующиеся пластины поставляются в готовом для экспонирования виде такими фирмами, как BASF (например, формные пластины Nyloflex) или DuPont (пластины Cyrel). Они бывают одно- и многослойными.

Рис. 3-7
Структура различных формных материалов, применяемых для изготовления печатных форм флексографской печати:
а однослойная формная пластина (BASF);
б многослойная формная пластина (BASF);
в формная пластина для технологии «Компьютер–печатная форма» (цифровая флексография, BASF);
Примечание. Твердость 75 ед. по шкале А существенно мягче, чем 75 ед. по шкале Д для печатных форм высокой печати (Рис. 3-4)

Однослойные пластины состоят из рельефного слоя (не «сшитого» фотополимера), покрытого защитной фольгой. Разделительный слой обеспечивает лёгкое отделение защитной фольги. Лавсановая основа на оборотной стороне пластины служит для ее стабилизации. На рис. 3-7,а представлено строение однослойной печатной формы.

При обработке однослойных формных материалов сначала равномерно засвечивается оборотная сторона без копировального оригинала. Засветка оборотной стороны обеспечивает равномерное по всей площади «сшивание» фотополимеризующегося слоя и ограничивает глубину вымывания. Кроме того, она повышает светочувствительность слоя, обеспечивает стабильную структуру боковых граней и возможность образования промежуточного рельефа в тонких структурах, например, на растровых площадях (рис. 3-8).

Основное экспонирование производится под вакуумом после отделения защитной пленки с лицевой стороны пластины и размещения на лицевой поверхности пластины негатива (копируемого оригинала). Рельеф образуется путём фотополимеризации. Продолжительность и интенсивность основной экспозиции влияют на образование точек, углов боковых граней и глубину рельефа в тонких структурах (например, растрированные участки на рис. 3-8).

Рис. 3-8
Влияние продолжительности экспонирования:
а образование основания растровых точек (например, для линейной структуры) при УФ-излучении;
б углы боковых граней и глубина пробельных элементов (растрированных элементов изображения), рельеф флексографской цифровой печатной формы, толщиной около 0,6–0,7мм с минимальной глубиной пробельных элементов 70 мкм
Рис. 3-9
Передача изображения при флексографской пе- чати:
а нарушение передачи, деформация печатной формы, однослойная печатная форма (рис. 3-7,а);
б правильная передача печатного изображения при использовании печатной формы со сжимаемой подложкой, многослойная печатная форма (рис. 3-7,б) (BASF)

После основного экспонирования производится вымывание. Посредством растворителя неполимеризированные (незасвеченные) участки печатной формы вымываются. При этом используется механическая обработка щеткой. После вымывания печатная форма должна быть основательно высушена для того, чтобы проникший в рельефный слой растворитель полностью испарился. Далее следует равномерная засветка пластины по всей площади без фотоформы, чтобы все области рельефа были полностью полимеризованы. Флексографская печатная форма в этом состоянии имеет клейкую верхнюю поверхность, к которой прилипают пыль и грязь. При засветке УФлучами (рис. 1.7-11,а) или при погружении в раствор брома клеящая способность теряется. Клише для флексографской печати полностью готово.

Однослойные печатные формы изготавливаются толщиной от 0,76 мм (например, для печати на пакетах, плёнках, тонком картоне) до 6,35 мм (например, для печати на гофрокартоне, мешках из бумаги или пластика). При работе на пластинах толщиной до 3,2 мм могут использоваться линиатуры до 60 лин/см. Возможный диапазон градаций составляет при этом от 2 до 95%. Более толстые печатные формы (от 4 до 5 мм) используются с линиатурами до 24 лин/см, они обеспечивают градационный диапазон от 3 до 90%.

Многослойные пластины, предназначенные для качественной растровой печати, имеют строение, показанное на рис. 3-7,б. Они комбинируют в своей структуре принцип относительно твёрдых тонкослойных пластин со сжимаемой основой. Подложка самаобразует сжимаемую основу для рельефного слоя и принимает на себя деформацию при печати. При этом сохраняется печатный рельеф (рис. 3-9). Стабилизирующий слой обеспечивает почти полное отсутствие продольной деформации вследствие изгиба плоской печатной формы при монтаже на формный цилиндр. Достигаемый эффект повышения качества печати имеет место в том случае, когда тонкие однослойные печатные формы со сжимаемым пористым слоем приклеиваются на формный цилиндр.

Рис. 3-10
Лазерная запись на формный цилиндр-гильзу (digiflex , BASF)

Структура формной пластины для системы «Компьютер — печатная форма» схематично представлена на рис. 3-7,в (например, цифровые флексографские формные пластины фирмы BASF). При удалении защитной фольги освобождается «чёрный» слой, на который, например, с помощью луча лазера (с длиной волны 1064 нм) можно осуществлять запись путем разрушения слоя (абляции). Лазерный луч разрушает чёрный абсорбирующий энергию слой. При этом на формной пластине осуществляется запись точка за точкой. Чёрный слой выполняет задачу копируемого оригинала (негатива). После завершения записи пластина засвечивается по всей ее площади (предварительная и основная экспозиции) и дальше обрабатывается так же, как однослойная формная пластина для получения рельефа (здесь нет никакого «лазерного гравирования», как пояснялось в случае изготовления резиновых клише).

Рис. 3-11
Красочный аппарат флексографской печати с подачей краски через систему валиков
Рис. 3-12
Красочный аппарат флексографской печати с подачей краски посредством камерного ракеля

Монтаж печатных форм. Плоские клише фиксируются на формном цилиндре двусторонней липкой лентой. Увеличение размеров печатающих элементов, обнаруживаемое в направлении печати, следует компенсировать на допечатной стадии методом продольного сжатия.

Технология получения бесконечной формы (гильзы). Принцип этой технологии состоит в том, что на тонкостенную металлическую оболочку — гильзу (Sleeve) — нанесен формный материал. Внутренний диаметр гильзы выбран таким образом, что при подаче сжатого воздуха гильза может быть надета на формный цилиндр.

После прекращения подачи сжатого воздуха гильза закрепляется на формном цилиндре. Вся поверхность этой гильзы перед ее насадкой на формный цилиндр покрывается формным материалом. Далее поверхность формного материала экспонируется лазерным лучом (рис. 3-10). При этом отсутствуют продольное растяжение и неравномерности, связанные с наклеиванием клише при стандартном монтаже.

Добавить комментарий